edu.robogeek.ru

все об обучении робототехнике

prom.robogeek.ru

все о промышленной робототехнике

Основное меню
Категории новостей

Новый алгоритм позволит сделать «глубинное обучение» эффективнее

Исследователям из Университета Райса удалось адаптировать распространенную технологию быстрого поиска данных, чтобы сократить количество вычислений в рамках глубинного машинного обучения. Метод применим к любой архитектуре, при этом, чем больше нейросеть, тем значительнее можно сократить затраты на вычисления.

Новый метод особенно актуален для технологических гигантов, таких как Google, Facebook и Microsoft, которые работают с огромным количеством данных при разработке автономных машин, переводчиков и систем автоматических ответов на электронные письма.

Предлагаемый командой из Университета Райса метод основан на традиционном «хэшировании», превращающим данные в небольшие числа, с которыми легко работать. Эти хэши сохраняются в таблицах, которые можно сравнить с оглавлением книги. Такой подход позволяет сократить затраты на вычисления без значительной потери точности – по результатам исследований количество вычислений удалось сократить на 95%, тогда как точность изменилась всего на 1%.

Основной элемент сети глубинного обучения – это искусственный нейрон, математическая функция, превращающая исходные данные в некоторый результат. В ходе машинного обучения все нейроны изначально одинаковы, но специализируются в процессе. Системе «демонстрируют» большие объемы данных, и каждый нейрон распознает отдельные ее части и закономерности. Нейроны нижнего уровня выполняют простейшие задачи, передавая результаты работы нейронам более высокого уровня. Системы с всего несколькими уровнями нейронов могут научиться распознавать на изображениях лица, собак, дорожные знаки и другое.

Чем больше в системе нейронов, тем больше у нее возможностей – сегодня единственным ограничением являются доступные вычислительные ресурсы, поскольку разработанные 30-50 лет назад алгоритмы просто не рассчитаны на такой уровень сложности. Новая разработка позволяет сократить количество необходимых вычислительных ресурсов – чем больше нейросеть, тем значительнее экономия. Согласно математическим моделям, в нейросети из миллиарда нейронов экономия может составить более 99% процентов.

Комментарии

(0) Добавить комментарий


Ищите команду разработчиков? Не можете найти робота для своих нужд? Пишите нам!

Для обратной связи укажите ваш E-mail, он будет доступен только администратору. Так вы сможете оперативно узнать, когда ответ на ваш вопрос будет опубликован

Новые комментарии

Liftware level не позволит опрокинуть ложку во время обеда (+видео)
Гость
21.09.2018
08:29:03
На сайте производителя за 195.00 $: https://store.liftware.com/collections/liftware-level/products/liftware-level-starter-kit Но вопрос доставят ли ее в Ваш регион.
Автономный подводный робот выходит на охоту за крылатками
Редакция Robogeek.ru
29.08.2018
12:30:43
В данной статье речь идет о крылатках. Просим прощения у наших читателей за некорректные данные в материале - ошибка уже исправлена.